Predictions of Friction Coefficient in Hydrodynamic Journal Bearing Using Artificial Neural Networks
نویسندگان
چکیده
This paper explores the influence of frequency shaft sleeve rotation and radial load on a journal bearing made tin-babbitt alloy (Tegotenax V840) under hydrodynamic lubrication conditions. An experimental test frictional behaviour plain was performed an originally developed device for testing rotating elements: bearings. Using back-propagation neural network, based data, artificial network models were to predict dependence friction coefficient temperature in relation speed. data measured with which trained, well-trained networks mean absolute percentage error training 0.0054 % 0.0085 %, respectively, obtained. Thus, model can depending
منابع مشابه
THE USAGE OF ARTIFICIAL NEURAL NETWORKS IN HYDRODYNAMIC ANALYSIS OF FLOATING OFFSHORE PLATFORMS
Floating offshore structures, particularly floating oil production, storage and offloading systems (FPSOs) are still in great demand, both in small and large reservoirs, for deployment in deep water. The prediction of such vessels’ responses to her environmental loading over her lifetime is now often undertaken using response-based design methodology, although the approach is still in its...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
modeling of aroma compounds diffusion coefficient in polymeric films using artificial neural networks
sorption of flavor compounds to inner layer of polymer packages and subsequent diffusion results in loss of food flavor and consequently decreases shelf life and consumer acceptance of food stuffs which in turn causes major economic losses, so it is of utmost importance to research on diffusivity of these compounds in polymers to minimize negative effects of this phenomenon. in current research...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Strojniški vestnik
سال: 2021
ISSN: ['2536-3948', '0039-2480']
DOI: https://doi.org/10.5545/sv-jme.2021.7230